

Scalable web solutions: Use case: Regulatory reform in Vietnam on eZ Publish CMS

Ivo Lukač <u>www.netgen.hr</u> feat. <u>www.infomar.hr</u>

Regulatory reform in Vietnam

- Finding procedures fast for public users
- Project by Vietnam goverment with foreign advisers, consultant & know-how
- Sense Consulting, Zagreb part of international team
- Netgen responsabilities:
 - Information architecture
 - Implementation
- Infomar responsabilities:
 - Infrastructure architecture
 - Installation, security, performance

 \star

Why scalability is important?

88 million people
21 million Internet users

Starting point (1)

Main parameters

- Amount of information
- Structure of information
- Number of visitors and editors
- Availability
- Response time
- Security
- Extra functionalities:
 - Search....

Starting point in use case

Main parameters

- 125 000 dossiers with additional data, 300 000 objects overall
- Tree structure based on task forces, lot of object relations
- Concurrent 80 editors in peaks
- 200GB of data & cache on disk, 4 million files
- 40GB data in database
- Usefull and fast search

Infrastructure

- Number of servers per task
- Data storage
- Services (apache, mysql, varnish, eZ)
- Clustering
- Redundance
- Loadbalancing
- Easy monitoring

eZ[°]SILVER PARTNER

Architecture overview (basic)

netgen

Infrastructure in use case

- 8 servers on disposition
- SAN iscsi + Oracle Cluster FS2
- 2 varnish, 3 web servers, 2 database servers, 1 search server
- Redundant varnish in failover mode
- Redundant web server monitored and balanced by varnish
- Mysql master slave replication

System considerations (1)

• iSCSI SAN:

- Cheaper option,
- Middle range performance ~1000 IOPS max, realno 500 IOPS (RAID5 10krpm SAS)
- RAID1 for MySQL
- RAID5 for files
- Scalability possiblities: using more chasis, flashcopies, more controlers, more disks, transfrmation to RAID10

System considerations (2)

- Mimized writing (in application)
 - To reduce cluster-wise flock() calls, use Memcached or similar
- Minimize HTTP calls to beckend servers
 - Use Varnish HTTP reverse proxy
 - Maximize CMS caching
 - Consider authenticated users and sessions (ESI)
 - Varnish Cache ratio should be 80% at least

Architecture overview (current)

System implementation (1)

• HTTP reverse proxy-cachevi (Varnish):

- DNS RR + HA IP cluster: automatic IP migration
- Random load-balancing with is_alive
- anti-DoS
- iSCSI (Open-iSCSI) on SAN:
 - IBM DS3300 as entry-level SAN iSCSI model
 - iSCSI + multipathing + OCFS2(Web) / Ext3 (SQL)
 - 500-600IOPS

System implementation (2)

- Web servers:
 - cluster-aware OCFS2 with no additional cluster services
 - Independent! Easier maintenance, easier scalability
- SQL servers:
 - Ext3
 - Problems with replication
 - Not so easy to scale, but not the bottleneck
 - For future: multimaster, SQL proxy, IPVS, etc.

Security, monitoring, redundancy

• Monitoring:

- Checksums, logs: OSSEC HIDS
- Service testing: Monit
- Monitoring & reporting: ZenOSS
- Authentication: Fail2Ban
- Redundancy:
 - 2x iSCSI ports on servers (multipath)
 - 2x LAN ports on servers (bonding)
 - 2x switches in cluster mode
 - 4x iSCSI ports on SAN (multipath, 2x controler)
 - 2x mgmt ports on SAN

InfoMAR

Application implementation

- Information structure in eZ Publish
 - Hierarchy, relations, attributes
- Interface in regard to different types of caching (view, block, static, ESI)
- Search (ezfind / lucene / solr)

Implementation in use case (1)

• Based on tree structure with objects of different classes (class -> set of attributes)

- Relations between dossier objects heavily used
- Caching:
 - Template cache
 - Cache blocks
 - View cache
 - Static cache
 - ESI (in future)

Implementation in use case (2)

- Ajax based functions
 - Search suggestions
 - Tree browse (not used yet)
- Search eZFind extension:
 - Based on Solr/Lucene
 - Results ranking based on relevance
 - Filtering
 - Faceting (not used yet)
 - Extremely fast

http://csdl.thutuchanhchinh.vn

Bad experiences (1)

• MySQL 5.0:

- usual SBR replication #FAIL
- Non consistent replication. Rollback?
- MySQL 5.1:
 - OOPS on master server (and reboot): slave server cannot continue replication from impossible position...
 - Need to monitor replication trough ZenOSS
- Debian Lenny kernels:
 - OOPS can happen
 - Unstable kernels moduls: GFS, GFS2

←InfoMAR

Bad experiences (2)

• Debian RHCS:

- Old packages2
- No active Debian maintainer
- won't fix bugs
- Hard to maintain (umount problems, etc.) uzrokuje razne popratne pojave: nemogućnost umounta GFS, čistog reboota stroja...
- GFS i GFS2:
 - Slow, unstable, bad scalability
 - GFS2: OOPS on all nodes after 5 hours of testing
 - GFS: decreasing performance over time

Advices

- Use OCFS2 neglible problems comparing to GFS
- Optimize caching on all levels
- Minimize writes to database and disk
- Use ESI to utilize Varnish for authenticated users
- Use Solr for reading and searching
- Make AJAX features

Ivo Lukač <u>www.netgen.hr</u> feat. <u>www.infomar.hr</u>

